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Highlights

• Milk and plant-based beverages require review on their sustainability in the 
food system.

• Sustainability includes economics, nutrient supply, and environmental 
footprint.

• Nutrient indexes need to be demographically stratified and food-group 
specific.

• Qualitative measures can be included into environmental and economic 
assessments.

• Single-metric indexes hinder transparency of results from sustainability 
analyses.



Abstract 

Sustainable food systems encompass nutrition, the environment and 
socioeconomics, each aspect requiring unique assessment and consideration. This is 
especially important in the dairy industry, since livestock contributes 14.5% of global 
greenhouse emissions while also contributing 49% to global calcium supply and 12% 
to global protein supply. This necessitates strict measurement to ensure science-
based decision-making while producing sustainably, ensuring adequate nutrient 
supply. This review aimed to identify and evaluate existing measures of sustainability 
with the goal to generate recommendations for future sustainability measurements. 
From a nutritional perspective, it identified existing measures such as nutritional life-
cycle analysis (nLCA), hybrid nutrient rich food index (NRF-h), NRF adjusted for 
adequate intake and nutrient deficiencies (NRF-ai), as well as the priority 
micronutrient density score, as methods which consider broader nutrient profiles and 
utilise more recent research, and therefore serve as a basis for future models. Major 
limitations exist in the incorporation of bioavailability or the food matrix effect in such 
measures, as well as food-group specific indices. The Prospective Urban Rural 
Epidemiology (PURE) healthy diet score also provides promise in serving as an 
updated version of current dietary guidelines. Environmentally, the life cycle analysis 
(LCA) approach forms a detailed basis for environmental footprint assessment, 
although the practical application thereof in modern agriculture may be cumbersome 
and may warrant the use of simpler metrics. However, the complexity of sustainability 
assessments due to differing production methods and system boundaries make 
comparisons difficult, which justifies either standardised or contextualised indices. 
Lastly, socioeconomics which are often measured only via retail price with a focus on 
economics, also deserve consideration of affordability at consumer and producer 
level by evaluating the effect of the production system on the local and global 
economy, producer affordability and the potential to improve livelihoods. In 
conclusion, a localised and holistic measure of sustainability is warranted which is 
both sector and context specific and reported in sufficient detail to prevent the 
masking of poor results due to single metric expressions. 
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Implications

This review provides insights into sustainability assessments, addressing the 
shortfalls of and making recommendations on existing measures. It can be used by 
aspiring scientists, the agricultural industry, and policymakers as a basis to improve 
current measures. There are no direct economic, environmental, or social 
implications, but rather an awareness and broader understanding of the subject-
matter. This may indirectly influence decision-making in each of the domains 
mentioned, with specific focus on the environment, socioeconomics, and nutrition. 

Introduction



Engaging in sustainable practices and ensuring transparent, replicable and 
continuous reporting are critical imperatives for industries across the board (O’Dwyer 
et al., 2005; Eccles et al., 2012). In light of sustainable production, given its intricate 
nature and heightened importance amidst global climate challenges, growing 
population estimates, and the increasing demand for reliable nutritional supply, 
Drewnowski (2018) encapsulates the multifaceted complexity within sustainable food 
systems, covering health, economics, society and the environment (United Nations, 
2015; Drewnowski, 2018). In this context, crucial questions emerge about how single 
metric sustainability assessments, like environmental life-cycle analyses (LCAs), and 
the resulting decisions, resonate across these diverse domains. These inquiries gain 
particular significance within the agricultural industry and the broader food system, 
and in this case dairy within dairy production (Drewnowski, 2018).

The agricultural industry, particularly the livestock sector, faces mounting pressure to 
curtail its environmental impact, propelled by findings from environmental studies and 
LCAs. In one way of LCA measuring, FAO estimated that 14.5% of anthropogenic 
greenhouse gas (GHG) emissions are derived from livestock (FAO, 2018), while 
other approaches yielded both lower and higher numbers depending on methodology 
deployed. In the dairy sector, comparative studies reveal that dairy milk yields 1.586 
CO2eq/kg of product, while beverages such as soy beverage yield 0.48 CO2eq/kg 
(Sing-Povel et al., 2022). In addition, the Green Deal’s conservation efforts, which 
include reducing land-use, restoring natural habitats and reducing greenhouse gas 
emissions, further pressure the agricultural industry to reduce their inputs which can 
lead to productivity losses in the livestock sector (European Commission, 2024). 
These efforts and measures have prompted a shift towards plant-based products and 
the development of novel protein and milk alternatives such as cell-based meats or 
precision fermentation products, as these are perceived to have a lower 
environmental footprint and reduced land use (Wood et al., 2023; Rombach et al., 
2023). However, relying solely on single-metric-based results and ensuing consumer 
shifts neglects the potential repercussions on health, economics and society 
(Ramsing et al., 2023). For instance, dairy milk plays a pivotal global role in calcium 
and protein supply and provides job security and income for local communities, 
whereas alternative proteins may provide investment opportunity and diversified 
consumer choices (FAO, 2016; Smith et al., 2022a; White & Gleason, 2023; Wood et 
al., 2023). 

Thus, it becomes evident that oversimplified comparisons may lead to misguided 
decisions. Since sustainability demands robust and consistent units of measure for 
accurate comparisons which are both replicable and representative of the 
substances in question, effectively measuring and comparing the sustainability of 
products, such as milk or plant-based beverages, is crucial. Utilizing a multi-
dimensional metric can offer a more holistic perspective, guiding comprehensive 
decision-making on farms and among consumers. Due to the contribution of dairy to 
the global food system and the potential consequences to be faced should the sector 
reduce production (Smith et al., 2022a), this narrative review will focus on the 
sustainability of milk and plant-based beverages, emphasising nutrition, environment 
and social aspects. Through the use of these topics as keywords in a broad literature 



overview, the examination of current metrics, and critical review, it aims to identify 
practical indicators and offer informed recommendations for holistic sustainability 
assessments.

Milk and plant-based beverages in human nutrition

Nutrition and health are crucial in discussions surrounding sustainability, especially 
considering the current status of the global nutrient supply (Drewnowski, 2020; Smith 
et al., 2021). While global supply of energy is reportedly sufficient to meet global 
energy demands, logistic and accessibility hurdles still lead to hunger and 
undernourishment, particularly in areas of social instability or wars. More so, large 
scale global incidences of malnutrition characterised by specific nutrient deficiencies 
such as zinc, protein, vitamin B12, vitamin A, and calcium are widely spread 
(Sivaprasad, 2019; Smith et al., 2021; Han et al., 2022; Dave et al., 2023). In light of 
this, it is crucial to identify products that combat these deficiencies and contribute to 
global nutrient supply in an adequate manner, while still managing contributions to 
the economy and the environment.

Upon comparing the range of nutrient profiles of dairy milk, oat beverage, almond 
beverage and soy beverage, such as summarised in Table 1, it is evident that each 
milk type offers distinct nutritional characteristics. Dairy milk naturally stands as a 
primary source for essential nutrients such as calcium (49% of global nutrient 
availability), vitamin B2 (24%), lysine (18%), and dietary fat (15%), in addition to 
contributing over 10% of global nutrient availability for various other crucial 
components such as five indispensable amino acids, protein (12%), vitamins A, B5, 
and B12, as well as phosphorus and potassium (Dave et al., 2023; Smith et al., 
2022a). Based on this, a potential deduction is that the avoidance of milk in diets may 
aggravate existing nutrient deficiencies if not adequately replaced or supplemented.

Meanwhile, plant-based beverages, including soy, almond and oat beverage, have 
gained popularity globally, of which the nutrient contributions have not been reported 
yet. While these beverages may not naturally replicate the nutritional profiles of dairy 
milk, fortification processes have addressed gaps in essential micronutrients, 
providing a range of nutrients similar to that of dairy milk, as seen in the diversity in 
nutrient profiles depicted in Table 1 (Magkos et al., 2020; Grasso et al., 2023). 
Fortification is a crucial component for these beverages, especially for calcium and 
vitamin B12, which are primarily found in animal-sourced foods. Yet, it is important to 
note that these beverages may provide additional nutrients such as vitamin E which 
is not readily found in animal-based products (Abeyrathne et al., 2022; Leroy et al., 
2020 White & Gleason, 2023)

The most evident, however, is that comparing different milk products solely based on 
nutritional profiles is challenging due to variations in production processes, 
fortification and ingredient composition (Reinecke & Casey, 2017; Winans et al., 
2020; Walther et al., 2022). Bioavailability discrepancies between plant-based and 



animal-based products, coupled with differing nutrient compositions, further 
complicate direct comparisons (Beal & Ortenzi, 2023; Dave et al., 2023). For 
instance, fat-soluble vitamins are more efficiently absorbed in high-lipid products, 
while iron bioavailability decreases in the presence of high fibre content (Adams et 
al., 2018; Dave et al., 2023). Specific substances such as lactose can enhance 
nutrient uptake, particularly calcium (Kwak et al., 2012).

Another example is the complexity of protein profiles. The protein profile of milk is 
among the most complete, with all essential amino acids present and being 
characterised by high-quality proteins such as whey protein and casein (Ramsing et 
al., 2023). These proteins are associated with anticarcinogenic effects and have 
different absorption rates, allowing for both quick and slow release to provide short- 
and long-term supply of protein and amino acids (Davoodi et el., 2016). Considering 
the continuous catabolism and anabolism of amino acids in the body and consequent 
steady supply of amino acids required, this is an advantage (Kadowaki & Kanazawa, 
2003). In some cases, the bioavailability of protein in milk exceeds 100, as 
determined by digestible indispensable amino acid (DIAAS) scoring, making it a 
valuable addition to a diet otherwise poor in protein content, since it can supplement 
amino acids in other foods to increase collective uptake of protein (Dave et al., 2023). 
While the protein content and bioavailability of oats and almonds are reportedly low, 
soy beverage exhibits almost similar bioavailability DIAAS scores and also contain all 
essential amino acids (Reynaud et al., 2021; Dave et al., 2023). This emphasises the 
additional consideration factors when comparing nutrient profiles in an attempt to 
assess nutrient adequacy or make healthy consumer choices. 

Dietary recommendations, however, provide guidance in focusing on whole food 
groups rather than single nutrients, although discrepancies exist even in that. 
Previously, low fat dairy has been recommended with avoidance of animal-based fats 
for the safety of heart health (Reedy et al., 2018; USDA, 2020). Recently, however, 
full fat dairy such as milk, cheese or yogurt form part of the healthy diet as released 
by PURE, where daily intake is recommended up to 113 grams (Poli, 2020; Mente et 
al., 2023). Contrary to standard public dietary recommendations and previous 
assumptions on dairy and cardiovascular health, multiple studies have found dairy to 
have a neutral and even a protective effect on cardiovascular health (Mozaffarian, 
2021 Mente et al., 2023; Ramsing et al., 2023). Plant-based beverages, on the other 
hand, have no associated dietary recommendations with the exception of fortified soy 
beverage, which has recently been added to the dietary guidelines for Americans 
(USDA, 2020).

Thus, despite the evident disparity in the intrinsic nutritional profiles of milk and plant-
based-beverages, each of these products can play a role in a sustainable food 
system, whether naturally, such as with dairy milk, or through fortification, such as 
with plant-based beverages. However, it is clear that examining single nutrient 
deficiencies and their remediation is just one facet of assessing nutritional adequacy. 
Factors such as overall health impact, the influence of the food matrix, and nutrient 



bioavailability all contribute to a more comprehensive understanding (Shkembi & 
Huppertz, 2022). Additionally, it is essential to consider the context of specific 
individuals or populations (Ridoutt, 2021). Evaluating nutrient density by assessing 
content per kilojoule can further illuminate the picture, especially given that milk ranks 
among the most nutrient-dense foods (Drewnowski, 2018). In this context, it is clear 
that viewing the sustainability of a product from a nutritional adequacy perspective 
will depend on the desired outcome, as well as the way in which it is measured and 
expressed. Hence, it is necessary to investigate the existing methods of measure 
and how they are expressed before considering these parameters within 
sustainability assessments. 

Existing measures of nutritional profiles

A multitude of nutrient profiling or indexing methods exists, in addition to the 
conventional assessment of nutrient profiles which examines individual nutrient 
content per 100 ml, 100 g, or per serving. These methods, of which the majority are 
captured in Table 2, mostly reward food items based on specific ingredients or 
nutrients perceived as healthy, and penalises foods for ‘“unhealthy” nutrients or 
nutrients and food groups to limit, such as saturated fat. Exceptions are in specific 
outcome-related measures such as the Dietary Approaches to Stop Hypertension 
(DASH) diet, which focuses on hypertension prevention, or the priority micronutrient 
density score which rather focuses on combating malnutrition in low-to-medium-
income groups. Regardless, the common trend is to move past nutrient content and 
gravitate towards a more holistic view of a product’s nutritional profiles, especially 
focusing on nutrient density and on health outcomes. There are, however, still 
limitations to some of these measures, which recognises the urgency of accurate 
research in health outcomes of dietary choices and nutrients, such as discussed 
below.

Shortcomings and recommendations

In all of the above measures, a risk of bias or the use of outdated dietary guidelines 
exists pertaining to the definition of beneficial or harmful attributes, in addition to 
failing to consider food matrix effects or bioavailability, of which the priority 
micronutrient density score is an exception (Dehghan et al., 2017; Aguilera, 2019). In 
general, the existing measures have played a valuable role over the years in 
conveying nutrient information, aiding consumers in healthier dietary choices, in 
addition to assisting policy-makers with decisions. Yet, these methods may not offer 
a comprehensive view of the product’s overall healthfulness, especially when 
education about individual nutrients or whole product benefits are lacking (De 
Temmerman et al., 2021; Ortenzi et al., 2023). 

Adaptations to future nutrient profiling systems require continuous revision based on 
updated research and dietary recommendations, along with components that capture 
the whole food benefits or consider nutrients within the context of the product, food 
group and even targeted consumer. Recent studies and innovations like the 
Prospective Urban Rural Epidemiology (PURE) Healthy Diet Eating Pattern, priority 
micronutrient density score, and NRF-ai could assist in this as these address issues 



such as nutrient deficiencies, specific population requirements, and a comprehensive 
assessment of dietary and health outcomes within whole food groups, rather than 
fixating on isolated nutrients (Ridoutt, 2021; Mente at al., 2023; Beal et al., 2023). 

Furthermore, while adaptations to the nutrient rich food (NRF) Index related to 
carbohydrates exist, there is an absence of food-group-specific nutrient indexes, 
such as an NRFi tailored specifically to dairy foods or proteins (Drewnowski et al., 
2022). This absence can lead to unintended favourable or unfavourable results when 
comparing foods from entirely different food groups (Adams et al., 2018). Moreover, 
these indexes fail to account for the global supply of specific foods or their 
contributions to global nutrient adequacy; dairy as an example, which substantially 
contributes to the global protein and calcium supply (White & Gleason, 2023). When 
considering substitutions, it becomes essential to evaluate whether plant-based 
beverages can sufficiently supplement these nutrients to the same extent, on a 
bioavailability basis. Moreover, plant-based beverages may excel in delivering 
important antioxidants or nutrients not naturally present in dairy (Craig et al., 2023). 
This leaves room for more nuanced evaluations and potential nutrient weightings 
based on their contributions or the inclusion of both whole-food health outcomes, 
particularly when comparing specific foods within the same food group (Ridoutt et al., 
2021). Such an approach enables a more comprehensive assessment of a food’s 
sustainability within the broader context.

Thus, for future nutrient assessments to be more accurate and comprehensive, it is 
recommended to include localised and population-specific nutrient requirements, in 
addition to considering factors such as bioavailability and uptake, where data 
availability allows. Existing models would further benefit from revision based on more 
up-to-date research on the benefits and risks associated with specific nutrients, 
which may include the addition of food matrix effects as opposed to focusing on 
single nutrients. Finally, for comparison, it is recommended to tailor nutrient indexes 
to food groups or types. 

However, nutrient profiles cannot be viewed in isolation, but should be considered in 
conjunction with environmental and economic assessments, guiding more 
sustainable consumer choices from both a human and a planetary health perspective 
(McLaren & Chaudhary, 2021; Hatjiathanassiadou et al., 2023). An example of such 
is a nutritional life-cycle analysis (nLCA), offering a more detailed approach to 
environmental aspects (Weidema & Stylianou, 2020). However, if similar approaches 
are to be adopted in future sustainability assessments, a deeper understanding of the 
environmental footprint of products and the methodologies employed in their 
measurement becomes imperative. The environmental components of milk and 
plant-based beverages are therefore explored in the following section.

The environmental footprint of milk and plant-based beverages



The environmental footprint of a product encompasses a range of indicators such as 
carbon emissions, land use, water use and biodiversity loss, among others (Hoekstra 
et al., 2011). However, it is most typically characterised by the carbon footprint or 
emissions associated with product production, expressed as carbon dioxide 
equivalents (Dong et al., 2021). When examining the environmental footprint of milk 
and plant-based beverages, distinct differences become evident, as highlighted in the 
comparison in Table 3. These emissions result from existing LCA’s which were used 
to investigate factors such as fuel used during cultivation or transportation, fertiliser 
and pesticide application on farms, energy consumption, total water usage, direct 
greenhouse gas emissions, and more.

Based on Table 3, plant-based beverages exhibit comparable carbon footprints, 
while dairy milk requires nearly twice the emissions for its production. Yet, 
considering that within the same product category, emissions can vary by up to 1 
kgCO2eq/kg of the product, the comparability of results is once again questioned, 
being emphasised by some cases of soy beverage and oat beverage production 
requiring higher emissions compared to specific instances of dairy production. Raw 
material production further yields markedly different outcomes. In most cases, on-
farm dairy production demonstrates lower emissions than plant-based production, 
except for oat beverage, which, in this particular case, was produced through 
regenerative agriculture and consistently yielded lower emissions (Blignaut et al., 
2019). The primary contrast between on-farm carbon emissions and final product 
carbon emissions stems from the quantity of raw material present in the final product. 
In the case of dairy milk, all the raw material is processed into milk, whereas plant-
based beverages primarily consist of water, 2–11% plant-based raw material, along 
with flavourings and additional vitamins or minerals (Pointke et al., 2022). A similar 
pattern emerges when examining water footprints (Hoekstra et al., 2011; Ercin et al., 
2012; Owusu-Sekyere et al., 2016; Tozzini et al., 2021). The observed differences 
and variances within and among different products, both in terms of raw materials 
and final products, can be attributed to differences in production systems and system 
boundaries included in the life-cycle analysis, meriting the review of an LCA as a 
method of measure for environmental footprint (Volpe et al., 2015).

Existing measures of environmental footprint

The LCA methodology, the most widely-used method in environmental sustainability 
assessments, provides a comprehensive evaluation of total emissions and 
sustainability indicators from cradle-to-grave to measure the overall carbon and water 
footprints of production – the most commonly used indicators (Kayo et al., 2014, 
Marvinney & Kendall, 2021). The carbon footprint refers to direct and indirect 
greenhouse gas emissions, including those resulting from energy usage and other 
inputs (Kayo et al., 2014; Winans et al., 2020). Emissions such as carbon dioxide, 
methane and nitrous oxide are converted into carbon dioxide equivalents (Jungbluth 
& Meili, 2019; Winans et al., 2020). The water footprint includes categories such as 
blue water, green water and grey water, which reflect direct and indirect water usage 
(Hoekstra et al., 2011).



Results may vary depending on the chosen system boundaries. The cradle-to-gate 
assessment is applicable to on-farm production for plant-based beverages, 
measuring inputs over the crop’s lifespan to calculate emissions per kilogram 
(Winans et al., 2020; Marvinney & Kendall, 2021). Dairy production assessments 
consider both pasture cultivation and animal inputs. Recycling products into farming 
systems, like using manure for fertiliser, is deducted from emission calculations 
(Chobtang et al., 2016; Reinecke & Casey, 2017). However, co-products sold (e.g. 
meat or soybean hulls for livestock feed) and their emissions may or may not be 
included. An overview and example of inputs considered in dairy production and 
plant-based beverage production can be seen in Figure 1 and Figure 2.

In plant-based beverage production, the final processing steps involve milling raw 
ingredients, creating a slurry, enzymatic hydrolysis, filtration and flavour modification 
(Winans et al., 2020). Dairy milk focuses on homogenisation, pasteurisation and 
cooling. Processing time and temperature contribute to the carbon footprint, with 
additional factors like ingredients, co-products, additives and energy sources 
impacting it (Chobtang et al., 2016). The efficiency of direct and indirect heating 
methods in ultra-pasteurisation also affects emissions (McClements et al., 2019). In 
gate-to-gate or cradle-to-grave assessments, transportation is included with factors 
such as transport mode, distance and material weight influencing emissions, in 
addition to considering logistical inputs, marketing and other factors to maintain the 
product (Kayo et al., 2014; Jungbluth & Meili, 2019; Winans et al., 2020; Marvinney & 
Kendall, 2021). 

On farm level, dairy farming exhibits similarities pertaining to cultivation processes 
required for feed production. However, key differences exist in herd-management, 
manure management, as well as the extent of processing at factory level, which is 
less extensive than that of plant-based beverage production (Chobtang et al., 2016; 
Reinecke & Casey, 2017). Hence, as previously observed, assessments can vary 
widely between farms and factories due to differences in input variables, values and 
system boundaries, requiring careful scrutiny when comparing the results of one LCA 
with one another. 

Despite variations, an LCA remains the most common tool for determining 
environmental footprints in production, owing to its integration in nutritional LCAs 
(nLCA) to calculate the carbon emission “cost” of achieving a sufficient nutrient 
profile (Weidema & Stylianou, 2020; McLaren & Chaudhary, 2021). While the 
incorporation of LCAs into metrics like nLCA is accepted, the unit of expression has 
sparked debate, emphasising the need to consider other subcomponents alongside 
LCA outcomes for a comprehensive sustainability perspective, such as a different 
unit of expression or the inclusion of ecological indicators in combined metrics 
(Weidema & Stylianou, 2020; Manzano et al., 2023).



The conventional measure of environmental footprint is global warming potential 
(GWP), which is converted to carbon equivalents to standardise the measurement 
across all greenhouse gasses. However, a key argument revolves around the 
atmospheric lifetime of different gasses, for example, methane is more potent in the 
short-term but decays quicker in the long-term (Manzano et al., 2023). Thus, 
depending on the timeframe in which an LCA is conducted, and whether it serves as 
a predictive or current analysis, methane or nitrous oxide is argued not to be treated 
as equivalent to carbon dioxide. However, GWP*, a variation of GWP, takes into 
account the lifespans of different gases in the atmosphere. (Blignaut et al., 2022; 
Manzano et al., 2023). 

 

Yet, additional arguments caution against using any form of GWP due to the 
complexities described above and GWP not accurately representing the heat-
capturing capacity of greenhouse gasses, particularly over extended periods, among 
other reasons (Meinshausen & Nicholls, 2022). An alternative approach, radiative 
forcing (RF), is considered more reliable in the short term, as it focuses on the 
immediate impact of gasses on the earth’s radiative balance (Jungbluth & Meili, 
2019). Unlike GWP, which relies on long-term predictions of gas interactions and 
atmospheric conditions, RF provides a more dependable measure for shorter 
timeframes (Vallero, 2019; Jungbluth & Meili, 2019).

Additional measures to carbon emissions, regardless of unit of expression, are 
ecological indicators such as those outlined by the TRACI system (Tool for the 
Reduction and Assessment of Chemical and other environmental Impacts) or 
planetary boundaries framework (Bare et al., 2003; Rockström et al., 2009). These 
include biodiversity loss, acidity, eutrophication potential, atmospheric toxicity, land 
use, and other indicators. Although not typically included in emission factors on front 
of pack (FOP) labelling which aim to integrate environmental profiles, studies have 
experimented with consumer behaviour when including measures like the 
environmental footprint single score (EF single score) on labels, which accounts for 
a host of ecological indicators, with positive results in terms of more environmentally 
friendly consumer choices (Arrazat et al., 2023). 

Shortcomings and recommendations

The environmental assessment of milk and plant-based beverage sustainability faces 
challenges and opportunities in achieving greater transparency, simplicity and holistic 
evaluations. While detailed methodologies like LCAs offer depth, reliance on their 
quantitative measures alone can oversimplify sustainability’s complexity (Weidema & 
Stylianou, 2020; Ridoutt et al., 2021). On the contrary, extreme LCA detail may 
hinder effective comparisons due to varied system boundaries and input parameters 
(Waas et al., 2014; Heusala et al., 2020). Adapting assessments with qualitative 
measures, simpler day-to-day producer-recorded metrics, and diversified, localised 
approaches may address these limitations. This includes adapting assessments to 
the geopolitical circumstances in which the production systems operate, from 
ecological conditions to support structures such as governance, and cultural or social 
preferences. In addition, exploring alternative units of expression, like RF, and 



considering sub-units relevant to ecological impact, productivity and farmland 
conditions before and after production may further enrich assessments, especially 
when tailored to the geographical environment. 

As with nutritional front-of-pack (FOP) labelling, a limitation in current FOP 
expression of environmental impact is transparency and consumer education on the 
label, along with contextualisation of the results. However, more sustainable 
consumer choices still warrant the inclusion thereof on packaging (Arrazat et al., 
2023). In the same breath, recognising that a single metric cannot encapsulate the 
full context of sustainability, particularly when it comes to FOP labelling for 
consumers, can prompt the development of a framework that addresses 
socioeconomics in addition to nutrition and the environment, as reviewed below. 

A socioeconomic view on milk and plant-based beverages

The affordability of a product is an inevitable driver of sales and a simple metric to 
assess the economic sustainability of a product (Mendoza-Velázquez et al., 2023). 
However, in a space where global trade has opened access to products across 
continents and contributed to more diverse and inclusive diets, the production and 
sale of products, their source and cost, each affect local and global economics and 
deserves consideration (Jiaqi et al., 2021; Silvestrini et al., 2023). The parameters to 
be considered in an economic evaluation is further dependent on the perspective 
from which it is assessed, such as the consumer perspective, producer perspective 
and the global or national perspective (Fleurbaey & Blanchet, 2013; Dynan & 
Sheiner, 2018). 

From a consumer perspective, affordability is one of the main measurement tools to 
assess socioeconomic sustainability. Globally, where 9% of the population is 
undernourished, and 13% of the population is obese, both of which are prevalent in 
the low-to-middle-income group, it can be deduced that although caloric needs can 
be met in the same income group where deficiencies exist, a diverse and healthy diet 
cannot be afforded, highlighting affordability as a main indicator. This is emphasised 
by Figure 3, as visualised by Ederer et al. (2023), where the difference between the 
percentage able to afford a healthy diet in low-income groups compared to high-
income groups varies by more than 70%. 

In that context, solely on a cost-comparison, plant-based beverages are 2–4 times 
more expensive than dairy milk, as seen in Table 4 which compares retail prices in 
America and South Africa, both highlighting the extreme diversity within the same 
product and the concern for nutrient supply when considering costs (Johnston & 
Pretorius, 2020; Skorbianksy, 2022). In that regard, the NRFi has been adapted by 
its original author to include price and affordability indexes, i.e. the Nutrient Rich 
Food Price Index (NRFPI). This serves as a method of considering costs in relation 
to nutrient supply and can be valuable in comparing the different dairy and plant-
based beverages on this basis (Mendoza-Velázquez et al., 2023). However, still in 



this regard clear definitions and standards need to exist to avoid extreme differences 
in outcomes. For example, in Figure 4 Drewnoski et al (2018) showed the differences 
in results when comparing the cost of a product in relation to energy density vs cost 
in relation to NRF. In this case vegetables excelled in the first instance and scored 
the worst of all food groups in the second instance, with dairy being fairly constant in 
both cases. 

From a more qualitative measure, measured either by means of surveys or 
quantitatively defined by consumption figures and trends, social acceptability is used 
as an indicator of economic sustainability which indicates the rising demand for plant-
based beverages across the globe (Tennakoon & Janadari, 2022), whereas bovine 
milk has varying trends where consumption increases in some countries and 
decreases in other countries as milk substitute consumption rises (OECD, 2019; 
McCarthy, 2019).

On the other hand, socioeconomic indicators relevant to producers encompass 
factors directly impacting the producer and the community they serve (Strezov et al., 
2016). Profitability, measured by return on investment (ROI), remains a central focus 
for producers, guiding decisions related to growth and improvement, and predicting 
future trends (Abdallah, 2017). Beyond this, considerations extend to the workforce 
employed by the producer and the consequential effects on both local and global 
economies. Factors such as wealth improvement or number of employees are 
common indicators used to determine the economic contribution of a producer. 
However, a more in-depth analysis extends to assessment of education levels of 
family members of employees, job satisfaction, health-plan, number of financial 
dependents and even succession planning within the family, amongst others (Akarsu, 
2023; Drakou & Symeonidis, 2023; Reich et al., 2023). The quantification of such 
indicators can pose challenges; however, it can also provide a broad overview of the 
social impacts of a producer. 

At the national level, broader economic indicators serve as benchmarks for 
assessing a country’s overall economic health, as well as the contribution of a 
producer to the local economy (Akarsu, 2023). The production and sale of dairy 
products, including milk plant-based beverages, influence a country’s gross domestic 
product (GDP) by contributing to the overall value of goods produced, in addition to 
contributing to a large extent to the local employment rate (FAO, 2016; Dynan & 
Sheiner, 2018). Monitoring these national economic indicators, often sourced from 
government reports, economic surveys and statistical analyses, provide a 
comprehensive understanding of the dairy industry’s role in the country’s economic 
landscape and has, to some extent, been included in socioeconomic sustainability 
assessments (Fleurbaey & Blanchet, 2013).



Expanding the scope globally, additional indicators contribute to a nuanced 
understanding of a country’s potential in the international economic arena. The global 
competitiveness index (GCI) evaluates factors such as infrastructure, 
macroeconomic stability, health and education, offering insights into a nation’s 
competitiveness (Qazi, 2023). The World Happiness Report considers citizen well-
being, including income, social support and life expectancy (Helliwell et al., 2012). 
The global innovation index assesses a country’s innovation capacity, providing 
valuable information about its economic potential (Brás, 2023). These global 
indicators collectively paint a holistic picture of a nation’s economic position on the 
world stage (Reich et al., 2023). However, to relate this to a specific industry or 
product may be challenging as the economic and social positioning of a product is 
intertwined with a variety of other factors and industries. This then summarises the 
complex nature of socioeconomic measurements and the extent to which they can or 
cannot be included in sustainability assessments, such as elaborated on below.

Shortcomings and recommendations

While the indicators mentioned provide valuable insights into a holistic economic 
view, some limitations still exist. Firstly, if only reliant on quantifiable economic 
indicators, such as profitability and GDP contribution, assessments may fail to 
consider the social impact and improvement, or potential negative effects associated 
with the production of specific goods (Fleurbaey & Blanchet, 2013). However, the 
collection of quantitative data through surveys or in-person assessments can be 
timely, restricted by ethical clearance hurdles, or provide subjective results and yield 
qualitative measures which yield sustainability assessments ineffective (Norrman et 
al., 2020; ul Haq, 2020). Hence, existing metrics like the NRFPI which solely 
considers consumer affordability may be the most efficient, especially with nutritional 
supply as the main objective (Silvaa et al., 2020). If, however, a metric aims to 
assess future sustainability competitiveness in the market or social impacts, the 
complexity of qualitative measures may be warranted. 

Another limitation lies in the variability of national contexts and their impact on 
indicator relevance. Different countries exhibit distinct socioeconomic structures, 
agricultural practices, and consumer behaviours, influencing the significance of 
certain indicators within that context (Gonzalez-Garcia et al., 2018). Therefore, a 
one-size-fits-all approach may not accurately capture the diverse challenges and 
opportunities within the global dairy industry or food system (Saleh, 2017). Future 
research should explore region-specific adaptations of indicators to provide insights 
into the socioeconomic sustainability of dairy production on a global scale (Ridoutt et 
al., 2021). Furthermore, the mentioned indicators may not fully encapsulate emerging 
challenges and opportunities within the dairy and substitute product industry 
(Lehtonen et al., 2007; Saleh, 2017). As the sector undergoes transformative 
changes, including advancements in technology, shifts in consumer preferences and 
evolving environmental concerns, future indicators must adapt to remain relevant 
which may involve the consideration of growth potential, improvement in efficiency, or 
even reward expenses and temporary reductions in profit for the benefit of 
improvements in production capability (Paul et al., 2020; Koutouzidou et al., 2022). 



In addition, and in spite of the complexity of including qualitative social indicators, 
there exists an opportunity to integrate more socially focused indicators into the 
evaluation of socioeconomic sustainability. Such factors include those related to fair 
labour practices, community engagement, gender-equality, social justice and the 
well-being of dairy farmers which could provide a more comprehensive 
understanding of the industry’s social impact and future capability (Cuesta et al., 
2019). To overcome challenges of reporting this data, advancements in data 
analyses, artificial intelligence and technology could enable real-time monitoring and 
reporting of both qualitative and quantitative measures, which may further enable the 
accuracy and timeliness of sustainability assessments.

Conclusion

Based on the pressure faced by the dairy sector to reduce emissions and the 
potential nutritional and socioeconomic consequences to be faced if a holistic 
approach is not implemented to measure its sustainability, sustainability in the dairy 
and plant-based beverage industry necessitates a comprehensive and localised 
approach. This entails one considering various readily available indicators across 
nutritional, environmental and socioeconomic dimensions. While existing methods 
like standard front-of-pack labelling and nutrient profiling systems play a valuable role 
in conveying nutrient information, these often fall short of offering a holistic view of a 
product’s overall healthfulness. Novel approaches, such as the PURE Healthy Diet 
Eating Pattern and priority micronutrient density score, address these limitations by 
considering dietary and health outcomes within whole food groups or focusing on 
essential nutrients, promoting a more holistic perspective on dietary choices. 
However, the absence of food-group-specific nutrient indexes tailored to dairy foods 
or proteins highlights a significant gap, emphasising the need for more specialised 
metrics. Additionally, environmental sustainability assessment, relying on quantitative 
measures like life-cycle analysis (LCAs), oversimplifies the complex nature of 
sustainability. Future developments should focus on transparent and holistic 
evaluations that consider different production systems, geographical locations and 
alternative units of expression beyond carbon equivalents. Socioeconomic 
sustainability assessment requires a balanced approach, acknowledging that 
affordability alone does not represent economic sustainability. The intricate dynamics 
of different contexts demand contextualisation and consideration of qualitative 
measures. In essence, sustainability cannot be distilled into a singular metric, 
emphasising the need for multifaceted evaluation frameworks that prioritise 
transparency, detailed and comprehensive education efforts for consumers, 
producers and policymakers.  For instance, whilst dairy is often found to be less 
environmentally friendly than its plant-based counterparts, it is more affordable and 
nutritious than non-fortified plant-based beverages. Thus, should metrics like 
affordability and nutrition be taken into account in addition to environmental footprint, 
a collective sustainability assessment may yield different results. In this context, a 
holistic and localised sustainability assessment framework, integrating nutritional, 
environmental and socioeconomic indicators, is imperative for fostering informed 
consumer choices, promoting industry resilience, and ensuring the long-term 
sustainability of the dairy and plant-based beverage sector.
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Table 1: Nutrient content (ranges) of bovine milk and plant-based beverages

The average content ranges of nutrients within dairy milk and plant-based beverages as sourced from literature.

Nutrient Bovine Milk Almond beverage Oat beverageSoy beverageRice beverageCoconut beverage

Energy (kJ)  197–284 36–155 128–200 132–256 181-284.51 119-238

CHO (g)  4.65–4.8 0–3.4 5–7.5 0.2–2.5 7.1-11.8 0-4.6

Protein (g)  3.1–3.62 0.62–1.67 0.6–1.2 2.78–3.7 0.33-0.8 0.13-1.43

Lipid (g)  1.6–3.67 1.15–2.71 1.5–2.2 1.57–4.35 0.83-1.17 1.59-2.61

Dietary fibre (g)  0 0.61–1.25 0.64–4.4 0.2–1.7 0.06-0.12 0.27-0.63

Ca (mg)  110–121 90–206 70–140 100–123.24 0.09-0.005 0.07-0.13

Fe (mg)  0.11 0.02–0.23 0–0.38 0.30–0.56 <0.05 0.14-0.16

Mg (mg)  10–11.5 7.9–8.02 3.37–12.4 13–20.9 0.003-0.005 0.004-0.008

Na (mg)  42–44 48–74.4 35.1–56 36–52.05 57.14-85.52 24.98-56.02



P (mg)  10 5 7 9 0.02-0.06 0.04-0.01

Vitamin D (µg)  0 0.4–0.9 0.3–0.6 0.3–0.47 - 0-0.5

Vitamin E (µg)  63.6–93.1 1 101.6–2 422 484–631 282–2 856 382.60-558.20 -

Vitamin B2 (µg)  108.3–190 54.9–119.46 14–91.56 57.8–160.71 0.8-1.6 0.1-1.4

Vitamin B9 (µg)  3.2–9.27 0.99–1.9 2.3–5.82 17.7–24.33 1.2-2.0 0.4-0.7

Vitamin B12 (µg)  0.44–0.45 0–0.44 0.18–0.48 0.32- 1.08 - 0.0-0.10

Vitamin A (IU)  158 148.8 106.8 201.2 - -

Sources:  Craig & Fresán (2021); Sunidhi et al. (2021); Singh-Povel et al. (2022); Vanga and Raghaven (2018); Paul et al. (2020); Fructuoso et al. (2021); 
Smith et al. (2022b); Walther et al. (2022) 



Table 2: Nutrient profiling systems of foods  

A summary on currently used methods of measuring and conveying key nutrient and health related information of food products, 
including positive and negative remarks and a brief description of how each metric functions.    

 

Measure/metric Description & aim Nutrient or food group 
encouraged

Nutrient or food 
group limited

Cons Pros        Reference

Basic nutrient 
label

Provides nutrient content 
per 100 ml or 100 g 

and/or serving size; in 
relation to daily 
requirements

Energy, carbohydrates, fat, 
protein, cholesterol, vitamins 
and minerals, incl. vitamin D, 

iron, potassium, calcium, and B 
vitamins, among others

Fat, sugar, 
sodium, 

cholesterol

Simplifies complex

nutritional information.  
Does not consider 

bioavailability or food 
matrix effects.

Practical and 
measurable 

perspective on 
nutrient intake.

FDA (2017)

FSA nutrient 
label

As above, including a 
colour code to indicate 

high to low concentrations 
of nutrients

Energy, carbs, fat, protein, 
cholesterol, vitamins and 

minerals, incl. vitamin D, iron, 
potassium, calcium, and B 

vitamins, etc.

Fat, sugar, 
sodium, 

cholesterol

May be irrelevant 
depending on dietary goals.  

Does not consider 
bioavailability or food 

matrix effects.

Clear indication of 
specific nutrients to 

avoid.

FSA (2016)

Nutri-Score Assign a letter grade 
based on nutritional 

content, penalising and 
rewarding specific factors

Fruit, vegetables, fibre, protein 
(with

varying points

Energy, 
sugar, 

saturated 
fat, sodium

Questions raised on scientific 
backing.

Aligns consumer 
perceptions with 

healthier choices.

UNICEF

(2021); 
Peters



depending on

source), nuts,

seeds, seed-oils

Does not consider 
bioavailability or food 

matrix effects.

& Verhagen

(2022); Van 
der Bend et 

al.

(2022); 
Scientific 

Committee 
of 

the Nutri-
Score, 2022

and 2023



Health star 
rating

Assign a star 
rating (1–5)

based on overall 
nutritional quality

Fruits, vegetables, 
nuts, legumes

Energy, sugar, 
saturated fat, 

sodium

No effect on consumer 
behaviour.

Misrepresents 
healthfulness of 
packaged foods.

Improves adherence 
from manufacturers 

to the label.

WHO (2019);

Bablani et al.

(2022)

Food 
compass

Assess 
healthfulness 

across 54

attributes and

provide a score of

1–100

Various nutrients, 
minerals and vitamins

& health attributes

Processing, 
additives, added 

sugar and 
negative 
attributes

Does not consider

bioavailability or food 
matrix effects.

Flexible and 
comprehensive.

Reedy et al.

(2019);

Mozaffarian

(2021); Tufts

(2023)

Healthy 
eating index

Evaluate how 
well a set of

foods aligns with 
recommended

dietary guidelines

Fruits, vegetables, 
whole grains, dairy, 
protein foods, etc.

Added 
sugar, 

saturated 
fat, sodium

Guidelines potentially 
outdated.

Does not consider

bioavailability or food 
matrix effects.

Promotes a balanced 
diet based in general.

USDA (2023)

DASH Diet Emphasise

nutrient rich foods 
to prevent and 
manage high 

blood pressure

Fruits, vegetables, 
whole grains, lean 

proteins, low sodium

Sodium, full-fat 
meat or dairy

Outcome

specific, thus

may be irrelevant for 
other health goals.

Proven effective in 
managing 

hypertension.

NHLBI (2021)



Nutrient 
Rich Food

Index (NRFi)

Rank and classify 
foods or diets 

based on

essential

nutrients and 
nutrients to limit

Carbohydrates, fat, 
protein, vitamins and 
minerals, incl. vitamin 

D, iron,

potassium, calcium, 
and B vitamins, etc.

Added 
sugar, 

sodium, 
saturated 

fat

Does not consider 
bioavailability or food 

matrix effects.

Nutrients to limit non-
contextual.

Measurable.

Indicator of nutrient 
density and supply.

Drewnowski

(2022)

PURE Healthy

Diet score

Emphasise six 
food categories 
for a balanced

and nutrient-rich

diet

Fruits, vegetables, 
nuts, legumes, fish, 

dairy, red meat, 
poultry

None Recent study, hence a 
potential for critique.

Evidence based 
(epidemiological 

study).

Balanced diet 
approach.

Mente et al.

(2023)

EAT-Lancet

Planetary

Health Diet

Combine nutrient 
recommendations 

with

environmental 
sustainability

Fruits, vegetables 
(up to half the 

plate), legumes, 
lean protein

Animal-sourced 
foods, starchy 
vegetables, 

added sugars

Criticised for predicted

micronutrient shortfalls.

Balances nutrient 
recommendations

with environmental 
concerns.

Willet et al.

(2019); Beal et al. (2023)



 

Table 3: Carbon footprint of bovine milk and plant-based beverages and the respective raw materials 

The ranges of carbon footprints of dairy milk and the most prevalent plant-based beverages, i.e. almond 
beverage, soy beverage and oat beverage, expressed as carbon equivalents per unit of product (litre or 
kilogram).  

Carbon footprint (ranges) of bovine milk and plant-based beverages

Final Product

EWG Food

Scores

Provide an 
overall product

score based on

nutrition,

ingredient

concerns, and 
processing

Fruit, vegetable, nuts, 
fibre, protein

Calories, fats, 
sugars,

additives,

contaminants, 
hormones

Rewarded components 
may be outdated.  

Environmental scores 
may be out of context.

Does not consider

bioavailability or food 
matrix effects.

Comprehensive 
assessment

considering nutrition, 
ingredients, and 

processing.

EWG (2023)



  

Unit 
Almond beverage

Soy

beverage

Oat       
beverage Dairy milk  Sources & comments

kgCO2eq/kg 0.31 0.21 0.84–1.74Helsing et al., 2019, De Lima et al, 2022  

kgCO2eq/L  0.467 0.438–
0.53

0.301 1.56 Coluccia et al., 2022; Sing-Povel et al., 2022   

kgCO2eq/kg  0.8 1.05 0.95 3.1 Sunidhi et al., 2021  

kgCO2eq/kg  0.39–0.58 0.24–1.21 0.54 1.7–1.97 Winans et al., 2020  

Average*  0.49 0.61 0.50 1.66 *based on number of results obtained across studies  

  

Raw Material  

  

  

        

  

Unit  Almonds Soybean Oats Raw dairy 
milk

Source & comments  

kgCO2eq/kg 1.03–
2.077

Marvinney et al. (2020); Volpe et al. (2015); Kendall et al. (2015); 
Marvinney et al. (2015)  

kgCO2eq/kg 0.35–1.03 Martin-Gorriz et al. (2020)  



kgCO2eq/kg 0.3–1.93 Blignaut et al. (2019); Escobar et al. (2020); Raucci et al. (2014); Maciel 
et al. (2016)  

kgCO2eq/kg 0.33–0.59 Blignaut et al. (2019); De Kock et al. (2018)  

kgCO2eq/kg 0.49–1.1.43Reinecke & Casey (2017)  

Average* 1.23 1.09 0.42 0.89 *based on number of results obtained across studies  

Table 4: Retail prices of bovine milk and plant-based beverages in America and South Africa   

A comparison between the retail prices of dairy milk, almond beverage, soy beverage and coconut milk as 
representatives of the most prominent milk and plant-based beverages, with South Africa and America as 
examples.

Item Unit Average MinimumMaximum

Cow’s milk  USD/liter  $1.04 $1.00 $1.08



Almond beverage  USD/liter  $1.65 $1.61 $1.69

Almond beverage  ZAR/liter  R48.20 R29.95 R126.00

Soy beverage  USD/liter  $1.76 $1.72 $1.80

Soy beverage  ZAR/liter  R32.86 R19.66 R60.00

Coconut beverage  USD/liter  $1.81 $1.72 $1.90

Coconut beverage  ZAR/liter  R77.94 R44.98 R299.75

Sources: Johnston & Pretorius (2020); Skorbianksy (2022)  



Figure captions   

Fig. 1. Simplified process diagram of life-cycle analysis for almond production (Winans et al., 2020)   

The inputs and outputs of almond production as measured and portrayed in a cradle-to-gate assessment in which case transport from the 
factory to the shelf are not included, but cultivation and processing are.  

  

Fig. 2. Summarised process flow of bovine milk production, inputs and outflows

The inputs and outputs of dairy production as measured and portrayed in a cradle-to-gate assessment in which case the system boundaries 
end before distribution.   

  

Fig. 3. Share of population unable to afford a healthy diet (Ederer et al., 2023)  



The percentage within each income group unable to afford a healthy diet.

Fig. 4. The relationship between median energy density (kcal/100 g) and median cost per 100 kcal ($/100 kcal) in comparison to the 
relationship between median NRF9.3 score and median cost ($/100kcal) (Drewnowski, 2018) 

A) The relationship between median energy density (kcal/100 g) and median cost per 100 kcal ($/100 kcal) for foods in the Food and Nutrient 
Database for Dietary Studies 2009–2010 dataset aggregated to 9 major US Department of Agriculture food groups. B) The relationship between 
median nutrient density (Nutrient-Rich Foods 9.3 score) and median cost per 100 kcal ($/100 kcal) for foods in the Food and Nutrient Database 
for Dietary Studies 2009–2010 dataset aggregated to 9 major US Department of Agriculture food groups. The size of the bubble represents the 
number of foods within each group. Abbreviation: NRF9.3, Nutrient-Rich Foods 9.3.










